
N91-20694

JOSEPH L. NIETEN
KATHLEEN M. SERAPHINE

LOCKHEED SPACE OPERATIONS

TITUSVILLE, FLORIDA

ABSTRACT

This paper describes procedural

modeling systems, rule-based modeling

systems and a method for converting a

procedural model to a rule-based

model.

Simulation models are used to

represent real-time engineering

systems. A real-time system can be

represented by a set of equations or

functions connected so that they

perform in the same manner as the

actual system. When the real-time

system is being modeled, the modeler

will have to code the system's

calculations and characteristics

using some computer language or

modeling tool.

Most modeling system languages are

based on FORTRAN or some other

procedural language. Therefore, they

must be enhanced with a "reaction"

capability. This reactive capability

allows the model to perform only

those calculations which are

dependent on information that has

changed. Even with this capability,

a procedural model must look at every

variable to determine if a

calculation which depends on that

variable should be performed.

Rule-based systems are reactive by

definition. Once the engineering

system has been decomposed into a set

of calculations using only basic

algebraic unary operations, a

knowledge network of calculations and

functions can be constructed. With

the network in place, the rule-based

system merely reacts to changes in

the data. When a variable is

changed, those calculations which

depend on it become active. The

rule-based system will continually

execute, performing all dependent

calculations appearing on the agenda.

The knowledge network required by a

rule-based system can be generated by

a knowledge acquisition tool or a

source level compiler. The source

level compiler would take an existing

model source file, a syntax template,

and a symbol table and generate the

knowledge network. Thus, existing

procedural models can be translated

and executed by a rule-based system.

Simulation

Simulation is used in the real

world to represent real systems, so

that users can perform operations on

a system that reacts the same as the

real system without the cost or

danger involved with the real system.

Simulation systems allow an engineer

to perform 'what-if' scenarios

against their designs of real

systems. Dangerous situations,

expensive failures, and real life

incidents can be recreated without

risk using simulation. The newest

use of simulation systems is in the

training community. The training

world has been incorporating

simulation models into their training

systems. The difference between a

simulation system and a training

system is an intelligent tutor in the

training system, which interacts

with the student and the simulation

models to provide a high fidelity

training session.

Simulation Models resemble

mathematical models in that both have

the same purpose and both utilize

mathematical relationships to

424



represent real systems. However,

closed-form, analytic equations do

not represent complex real systems

without some enhancements.

Simulation models use the black box

approach. Each component of the real

system is represented by a 'black

box' with inputs and outputs.

Further, each box is a complex

combination of continuous and

discrete functionality, which must be

represented by some mathematical

relationship while preserving the

continuous nature of some of the

calculations. This is accomplished

by maintaining the current state of

each variable used within the model,

while performing the numerical

analysis dictated by the

functionality of the 'black box'. A

great deal of temporal reasoning is

required of the modeler during this

decomposition process.

Real-time execution of

simulation models is an important

concept/issue. In order for a

simulation model to be considered

real-time, it must be at the exact

same state as the real system at any

given point in time. This means that

both the computer hardware and the

mod_l executive must be capable of

performing a tremendous number of

calculations per second. Further,

the model executive must minimize the

number of calculations required, so

that real-time performance becomes a

direct factor of the computer

hardware. This means the model

executive must be reactive and only

schedule those calculations which

have been stimulated. A calculation

is stimulated when a variable which

provides input to that calculation is

changed. Not every application

requires a real-time model, some can

function with a near-real-time model.

This is a model which is in sync with

the real system some acceptable

percent of the time, or hasno more

than a certain delay when providing

output.

Procedural Simulation Methods

Simulation models have been

developed using a variety of generic

languages such as FORTRAN, COBOL,

PL/I, C, and Pascal. There are even

models which have been developed

using tools which are based on one of

these languages. Those model based

on the newer tools have the ability

to represent continuous and discrete

systems, and can schedule

calculations to some degree.

However, in general, artificial

intelligence features in the standard

commercial simulation languages is

not yet available, mostly they still

rely on a procedural approach to

performing simulation operations.

A procedural model will execute

in a linear manner with well defined

entry and exit points. This means,

that the model must perform all

operations that are between the entry

and exit points of a particular

procedure. Normally, this would not

have an impact, however, the

simulation process may require other

areas of the model to perform

calculations based on the new

information generated by the

calculation that just finished. In

addition, that calculation itself may

actually have to be performed again.

Now, if the computer is busy

finishing one set of calculations, it

cannot (not yet anyway) also begin to

perform any other calculations in

tandem. Even if the computer could

perform these tasks, how is it going

to know that these tasks need to be

performed - unless they are

scheduled.

There are some systems today

which can schedule tasks or

calculations for execution. These

systems take a procedural model and

segment it into smaller pieces, which

can then each be executed from start

to finish without any need to

communicate with the other segments.

These segments can also be managed by

an executive which schedules them for

execution based on some ranking

algorithm. This is a highly

efficient method for performing

complex simulations, however, this

modeling system still has performance

considerations. Even so, there are

times when the amount of data which

is changing overwhelms the model

executive and it falls behind, thus

making it less than real-time. This

is a common problem when the real

system is very complex and/or very

large.

While segmenting a procedural

model is very effective, the

425



segmentation does not go down to the

lowest level of execution. By

segmenting a procedural model into

some number of calculations, the size

of the segment can be limited.

However, there are still some

calculations within that segment

which do not have to be performed.

The only way to absolutely perform

only those calculations which have

been stimulated is to segment down to

the lowest possible level. Once this

segmentation is accomplished the

final representation can be analyzed

and optimized. This level of

analysis and execution is going to be

very difficult using a procedural

methodology or tool.

Neural Simulation Methods

Neural Simulation Modeling

represents an expansion of Neural

Network and Rule-Based Programming

techniques. Neural Simulation Models

have two main components: A rule-

based model executive and a neural

network.

The model executive contains

explicit rules which define how to

interpret and perform operations on

the information contained within the

neural network. A basic knowledge of

unary mathematic operations, as well

as a working knowledge of the more

complex functions which are used to

represent physical systems

mathematically, are the heart of the

model executive. All function

operations and variable information

are imbedded within the neural

network. So, the executive must take

the function and variable information

stored in the associated nodes and

adjust the contents of the current

node depending on that information.

When a node is changed, the model

executive traverses the network,

performing any operations which are

dependent on the updated node. By

using a rule-based executive, this

process can be totally reactive,

which implies a higher degree of

efficiency (in general) than

procedural execution of models, since

nodes will only be adjusted as they

are stimulated. Thus, a stimulus

driven environment is required for

execution of the model executive.

Even though a stimulus driven

environment is ideal for model

execution, some controls must be

added. Some calculations are self

stimulating; that is they update a

variable which also provides input

for the calculation. This can

trigger an infinite loop, since most

rule-based systems rely on recency to

schedule a rule for execution. This

problem can be controlled by forcing

those types of calculations to cycle

in a two stroke fashion, similar to a

two cycle lawn mower engine. In

other words, those calculations which

can trigger their own execution will

not be able to do so until the next

cycle.

The most difficult problem with

implementing a rule-based model

executive is timing and/or

calculations dealing with a change

over time. The impact of this

problem can be avoided if some simple

steps are taken. Those calculations

which require a 'Delta T' must be

time stamped. Whenever the

calculation is executed, the time

that the last execution occurred must

be available to calculate the time

elapsed. Since every system has some
kind of internal clock or time

elapsed register, this impact becomes

an issue of machine cycles required

to do the time calculations versus

performance. Another possible impact

occurs when a model tries to use a

time delay for calculations. This

impact appears to effect only those

operations which are binary in

nature. Therefore, this impact can

be minimized with better modeling

techniques.

The neural network uses nodes to

store data and function information

and uses connections to define input,

output and directional

characteristics. This type of

representation allows for the most

powerful use of the knowledge stored

in its nodes. The mathematical

equations which represent the modeled

physical system have a sophisticated

connection scheme, when they are all

combined for the purposes of

simulation activities. The most

efficient way to represent some

physical system would be to first

identify the independent variables

within the system. Then identify

each level of abstraction which

426



relies on those independent

variables, and continue this process

until all levels of abstraction have

been identified. The final result

should be those variables which are

considered 'output only'

As a result of this process, all

nodes in the network will be unique.

This eliminates redundant

calculations and operations. Once a

network representation is in place,
the network can be 'scanned' for

closed operations. These are

operations which can be calculated in

a linear or procedural manner without

impacting the efficiency of the

network. In actuality, these

operations can be replaced by another

abstract function, which is in turn

added to the model executive. This

is not a trivial task, since the

system may try to over simplify the

network representation and

inadvertently change the functional

representation of the network.

Therefore, a degree of intelligence

is required when performing any

network operations/optimizations.

CLIPS was chosen to be the

platform for this development

effort. CLIPS is versatile and

portable; making the decision

relatively easy. It is also a NASA

product, so the product life was not

an issue. CLIPS is not the perfect

solution, at least not version 4.3.

The activation algorithm could be

optimized to improve real-time

performance and there are not any

intrinsic timing functions, which are

required to do some real-time

calculations against time. Even so,

CLIPS is the best software for the

job at hand.

CLIPS has a high potential in

the distributed processing arena.

Tasks which are queued on the agenda

could be executed on any available

processor, thus, increasing real-time

performance. This would enable

simulation performance and

capabilities to be directly related

to the hardware platform.

Neural Model's can be built

using a Knowledge Acquisition tool or

some other Graphical User Interface.

This is a major improvement in the

simulation arena. This also

represents the ultimate situation,

where older models can be converted

to a newer technology and then

maintained using a state of the art
GUI. Another scenario could be that

once the model is converted, you do

not have to use a GUI. Instead, you

could continue to build models with

the old system and use the new

compiler to debug or test the model

before it is put into production on

the simulation system. This alone

could have a major impact on

productivity.

Conversion Techniques for Simulation

Models

Why would anyone want to convert

simulation models? This is the one

of the most frequently asked

questions in the simulation

community. Simulation systems are

very complex by nature. They can

also be dependent on some specific

computer hardware for execution. As

a result, these simulation systems

are not portable to other computer

hardware platforms. The technology

base line has changed considerably in

the last five years making the

computer hardware developed during

that time 'obsolete'. Hardware

obsolescence is forcing the migration

of simulation systems to more modern

platforms. The user community has

identified the need to consider

portability when making decisions

concerning the future of their

simulation systems.

The decision one must make

during model conversion is whether to

convert the models themselves to a

new and improved modeling system or

to convert the compilers and

executives used to generate and/or

execute these models. Something to

consider when making this decision is

the composition of the job. The

actual 'coding' of the model accounts

for only 50% of the overall task.

The remaining 50% of the work is

spent doing the mathematical analysis

of the physical system. In other

words, at least 50% of the

development time is spent building

the knowledge about the physical

system being modeled, into a

mathematical system. The number of

man-hours invested in this component

427



of development can represent a large

investment. Therefore, it makes

sense to convert these models at the

source code level in order to retain

the investment made in building the

mathematical representation of the

physical system.

Source level conversion can be

complex. However, the real trick to

being able to do a conversion of this

type is the method of building the

new mathematical representations from

the old formats. While developing a

new compiler is not a trivial task,

it is a lot cheaper than the other

options and certainly better than

rewriting several hundred thousand

lines of code.

The source level compiler takes

an existing model source file, a

syntax template, and a symbol table

and generates the neural network,

which is used by the model executive

to perform the simulation. The

compiler uses a mapping function to

transform the original syntax into a

modified neural network. The network

must then be optimized in order to be

used efficiently. It must have all

duplicate nodes or covers (groups of

nodes) combined and/or eliminated.

All nodes not explicitly listed as

either inputs or outputs must be
eliminated as well.

The model compiler has to have a

degree of intelligence, so that it

can identify when to stop performing

optimizations. It also should have

the capability to request

clarification on a node's status.

The compiler should also be able to

isolate work-around techniques used

by the programmer. Periodically,

programmers will develop a method for

accomplishing some high order

function, which was not available

through the standard functional

syntax of the original modeling

system. This 'work-around' should

appear in the network as a pattern

where it can be identified and dealt

with. A work-around can either be

transformed or deleted depending on

the mapping function.

Another method of conversion

would involve porting the development

tools to a new platform. This will

allow for the continuation of

existing model source. However,

translating the base language of the

development tools into a new language

will not necessarily improve any of

the internal algorithms nor will it

guarantee portability. Portability

will always be a major issue. In

order for any product to survive in

today's rapidly advancing technical

world, It must be portable.

Productivity is also an issue, since

the development tools may be outdated

to begin with. Converting outdated

tools would be equivalent to giving

an older car a paint job, but not a

new engine.

Conclusions

Neural (Rule-based) Simulation

techniques are extremely powerful and

even though there are some problems

with the implementation of this

technology, neural models can provide

the high capacity data manipulation

required by the most complex real-

time models. This technology is

worth further investigation.

References

I. J. W. Schmidt, "Introduction to

Simulation,"Proceedings of the 1984

Winter Simulation Conference, Dallas,

TX, Society for Computer Simulation,

San Diego, CA, 1984

2. R. Shannon, "Artificial

Intelligence and Simulation," Proceed

ings of the 1984 Winter Simulation

Conference, Dallas,TX, Society for

Computer Simulation, San Diego, CA,

1984

3. W. M. Holmes, Artificial Intel-

ligence and Simulation, Society for

Computer Simulation, San Diego, CA,

1985.

4. D. E. Rumelhart, G. E. Hinton,

and J. L. McClelland," A General

Framework for Parallel Distributed

Processing," Parallel Distributed

Processing: Explorations in the

Microstructure of Cognition, VOL. I,

MIT Press, Cambridge, MA, 1986

5. B. P. Ziegler, Theory of

Modeling and Simulation, Wiley, New

York, 1976

428


